

Conics Diploma Style Practice Exam - ANSWERS

Formulas
These are the only formulas for conics you will be given on your diploma

$$
A x^{2}+C y^{2}+D x+E y+F=0 \quad, \quad A, C, D, E, F \in I \quad \begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& \\
& \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \hline-h=a(x-h)^{2} \\
& a^{2} \\
& \hline
\end{aligned}-\frac{(y-k)^{2}}{b^{2}}= \pm 1
$$

\square

1. \mathbf{A}

NR 1) 49.7
2. \mathbf{A}
3. \mathbf{B}
4. \mathbf{A}
5. \mathbf{A}
6. \mathbf{A}
7. D
8. B
9. D
10. \mathbf{C}
18. D
29. C

1. First identify the parameters in $\frac{(x-3)^{2}}{4}-\frac{(y+1)^{2}}{16}=-1$

The hyperbola is vertical because of the -1 ,

Centre is (3, -1)
a-value is 2
b-value is 4 .

The range is $y \geq 3, y \leq-5$ The answer is \mathbf{A}.

NR \#1. The equation given is $x^{2}+m(y-70)=0$ and the point $(59,0)$ can be read off the graph. Plug this in for x and y, then solve for m.
$x^{2}+m(y-70)=0$
$59^{2}+m(0-70)=0$
$3481-70 m=0$
$3481=70 m$
$m=49.7$

The answer is 49.7
2. Two parallel lines may not be formed using a double napped cone, a cylinder is required to make this shape. The answer is \mathbf{A}.
3. The conic $16 x^{2}+25 y^{2}-400=0$ should be converted to standard form in order to properly draw the graph.
$16 x^{2}+25 y^{2}-400=0$
$16 x^{2}+25 y^{2}=400$
$\frac{16 x^{2}}{400}+\frac{25 y^{2}}{400}=\frac{400}{400}$
$\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$

The range of the ellipse is $-4 \leq y \leq 4$, which is the same as saying the absolute value of range is less or equal to 4 .
The answer is \mathbf{B}.
4. For an ellipse, the product of A and C must be positive (have the same sign).

The answer is \mathbf{A}.
(B gives a hyperbola, and C \& D give parabolas)
5. Convert the equation to standard form by completing the square
$-2 y^{2}-x+20 y-47=0$
$-2 y^{2}+20 y=x+47$
$-2\left(y^{2}-10 y \quad\right)=x+47$
$-2\left(y^{2}-10 y+25\right)=x+47-50$
$-2(y-5)^{2}=x-3$
The vertex is located at $(3,5)$.
The answer is \mathbf{A}.
6. The equation $3 x^{2}-D x+E y-F=0$ has no y^{2} term, so the C value is zero. This will make a parabola. The degenerate of a parabola is a single line. The answer is \mathbf{A}.
7. If the distance between x-intercepts is $2 \sqrt{11}$, half of that is $\sqrt{11}$, and that is the a - value of the ellipse.
If the distance between y-intercepts is 10 , half of that is 5 , and that is the b - value of the ellipse.
The centre is at $(0,0)$
Plugging into the standard form equation, we get
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\frac{x^{2}}{(\sqrt{11})^{2}}+\frac{y^{2}}{(5)^{2}}=1$
$\frac{x^{2}}{11}+\frac{y^{2}}{25}=1$
The answer is \mathbf{D}.
8. Convert $\frac{3(x-1)^{2}}{17}-\frac{(y+1)^{2}}{17}=1$ to general form
$17\left(\frac{3(x-1)^{2}}{17}-\frac{(y+1)^{2}}{17}\right)=17(1)$
$3(x-1)^{2}-(y+1)^{2}=17$
$3\left(x^{2}-2 x+1\right)-\left(y^{2}+2 y+1\right)=17$
$3 x^{2}-6 x+3-y^{2}-2 y-1=17$
$3 x^{2}-y^{2}-6 x-2 y-15=0$
Note that $C<0$ was extra information not needed to solve the question.

The value of E is -2 .
The answer is \mathbf{B}.
9. First complete the square to obtain the standard form equation.

$$
\begin{aligned}
& 9 x^{2}+4 y^{2}-54 x+16 y+61=0 \\
& 9 x^{2}-54 x+4 y^{2}+16 y=-61 \\
& 9\left(x^{2}-6 x\right)+4\left(y^{2}+4 y\right)=-61 \\
& 9\left(x^{2}-6 x+9\right)+4\left(y^{2}+4 y+4\right)=-61+81+16 \\
& 9(x-3)^{2}+4(y+2)^{2}=36 \\
& \frac{9(x-3)^{2}}{36}+\frac{4(y+2)^{2}}{36}=\frac{36}{36} \\
& \frac{(x-3)^{2}}{4}+\frac{(y+2)^{2}}{9}=1
\end{aligned}
$$

The range is $-5 \leq y \leq 1$

The answer is \mathbf{D}.
10. The y - intercepts of $x^{2}+y^{2}-x+5 y-6=0$ can be found by substituting zero for x, then solving for y.
$x^{2}+y^{2}-x+5 y-6=0$
$y^{2}+5 y-6=0$
$(y+6)(y-1)=0$
$y=-6,1$

The answer is C. Remember that y-intercepts are actually a coordinate with $x=0$, so write the y-intercepts as $(0,-6)$ and $(0,1)$
11. The second graph has been reflected in the line $y=x$, which makes it an inverse. The answer is \mathbf{D}.

NR 2. If the parabola has a vertical axis of symmetry, the standard form equation is $y-k=a(x-h)^{2}$. Plug the data into this equation and solve for a.

$$
h=-3, \quad k=5, \quad x=-1, \quad y=-4 .
$$

$y-k=a(x-h)^{2}$
$-4-5=a(-1-(-3))^{2}$
$-9=a(2)^{2}$
$-9=4 a$
$a=\frac{-9}{4}$
The answer for $|a|$ is $\mathbf{2 . 2 5}$

NR 3. Since the total distance across the spark gap is double the value of a, we need to multiply this value by 2 .

The answer is $\mathbf{2 4 8 6} \mathrm{nm}$
12. To transform the x-intercept of 4 to 6 , multiply by 1.5 , or $\frac{3}{2}$

To transform the y-intercept of 4 to 10 , multiply by 2.5 , or $\frac{5}{2}$

The answer is \mathbf{C}.
13. First draw in the reference box to determine the a and b values
$a=3$
$b=2$
Centre $=(3,-2)$
Plug these into the standard form equation for a vertical hyperbola
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=-1$
$\frac{(x-3)^{2}}{3^{2}}-\frac{(y-(-2))^{2}}{2^{2}}=-1$
$\frac{(x-3)^{2}}{9}-\frac{(y+2)^{2}}{4}=-1$

The answer is \mathbf{A}.
14. Draw in the line $y=-3$, and then perform the stretch by a factor of 2 on the vertices. The new vertices can be found at $(3,3)$ and $(3,-5)$

The new range is $y \leq-5, y \geq 3$
The answer is \mathbf{B}.

15. If both A and C are negative, the product will give a positive, making the shape an ellipse.
The answer is \mathbf{B}.
16. Draw in the known points, and use them to determine the a and b values.

The standard form of the ellipse is $\frac{(x+4)^{2}}{36}+\frac{(y-6)^{2}}{9}=1$
The answer is \mathbf{D}.
17. Since the plane is cutting between the generator and central axis, it will give a hyperbola.
The answer is \mathbf{B}.

NR 4. The cutting plane can produce a circle at only one angle, and that is when it is perpendicular to the central axis.
The answer is $\mathbf{9 0}$
18. The plane passing parallel to the generator will give a parabola, and since it passes through the vertex, it will give the degenerate case of a single line.
The answer is \mathbf{D}.
19. Stretches must be applied before translations, so this rules out both A and B, and C will not give the correct shape.
The answer is \mathbf{D}.
20. Replace x with $(x+2)$ to represent 2 units left, and replace y with $(y+1)$ to represent 1 unit down.
$2(x+2)^{2}+(y+1)^{2}-2(x+2)+3(y+1)-9=0$
$2\left(x^{2}+4 x+4\right)+\left(y^{2}+2 y+1\right)-2(x+2)+3(y+1)-9=0$
$2 x^{2}+8 x+8+y^{2}+2 y+1-2 x-4+3 y+3-9=0$
$2 x^{2}+y^{2}+6 x+5 y-1=0$
The answer is \mathbf{D}.
21. First state what you know, then plug the values into the standard form equation

$$
a=\sqrt{10} b, \quad b=b, \quad h=2, \quad k=-1
$$

$\frac{(x-2)^{2}}{(\sqrt{10} b)^{2}}+\frac{(y+1)^{2}}{b^{2}}=1$
$\frac{(x-2)^{2}}{10 b^{2}}+\frac{(y+1)^{2}}{b^{2}}=1$
The answer is \mathbf{D}.
22. If the vertex angle is 60°, half of that will give the generator angle, which is 30°. An ellipse will be formed if the angle of the cutting plane is between the generator and perpendicular, so $30^{\circ}<x<90^{\circ}$. Note that you don't want to use the equal sign, since that would give a parabola \& circle too.
The answer is \mathbf{A}.
23. Complete the square.

$$
\begin{aligned}
& x^{2}+9 y-2 x-35=0 \\
& x^{2}-2 x=-9 y+35 \\
& x^{2}-2 x+1=-9 y+35+1 \\
& (x-1)^{2}=-9 y+36 \\
& (x-1)^{2}=-9(y-4)
\end{aligned}
$$

The vertex is located at $(1,4)$
The answer is \mathbf{A}.
24. Replace x with $x+h$ and y with $y-k$ to account for the transformations.

$$
x^{2}+y^{2}=1
$$

$(x+h)^{2}+(y-k)^{2}=1$
To find the x-intercepts, let $y=0$.
$(x+h)^{2}+(0-k)^{2}=1$
$(x+h)^{2}+k^{2}=1$

The answer is \mathbf{A}.
25. The standard form of $x-h=a(y-k)^{2}$ will give a horizontal parabola since the y is squared. A horizontal parabola does not pass the vertical line test, so it is not a function. The answer is \mathbf{A}.
26. Complete the square to write the conic in standard form.
$x^{2}+y^{2}+6 x-2 y-6=0$
$x^{2}+6 x+y^{2}-2 y=6$
$\left(x^{2}+6 x+9\right)+\left(y^{2}-2 y+1\right)=6+9+1$
$(x+3)^{2}+(y-1)^{2}=16$
The radius is $\sqrt{16}=4$ units.
The answer is \mathbf{C}.
27. First draw in the reference box for the hyperbola to determine the a and b values.

From here, we can see that
$a=8$
$b=12$
Centre $=(1,-1)$
Plug these values into the standard form equation of a vertical hyperbola.

$$
\begin{aligned}
& \frac{(x-1)^{2}}{8^{2}}-\frac{(y+1)^{2}}{12^{2}}=-1 \\
& \frac{(x-1)^{2}}{64}-\frac{(y+1)^{2}}{144}=-1
\end{aligned}
$$

The answer is \mathbf{C}.

28. From the standard form $\frac{(x-2)^{2}}{16}+\frac{(y+3)^{2}}{36}=1$, the centre is at $(2,-3)$

If moved 3 left and 5 up, the new centre is $(-1,2)$
The new standard form, then, is $\frac{(x+1)^{2}}{16}+\frac{(y-2)^{2}}{36}=1$
The answer is \mathbf{A}.
29. Multiply both sides of the equation by the common denominator.

$$
\begin{aligned}
& 400\left[\frac{(x-1)^{2}}{16}+\frac{(y-1)^{2}}{25}\right]=400[1] \\
& 25(x-1)^{2}+16(y-1)^{2}=400 \\
& 25\left(x^{2}-2 x+1\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-50 x+25+16 y^{2}-32 y+16=400 \\
& 25 x^{2}+16 y^{2}-50 x-32 y-359=0
\end{aligned}
$$

The answer is \mathbf{C}.

Written Response 1

Ellipse:

First state what you know: $a=60, b=40$, centre $=(0,0)$
Plug these values into the standard form equation to get the answer.
The equation is $\frac{x^{2}}{3600}+\frac{y^{2}}{1600}=1$

Parabola:

First state what you know: Vertex $=(0,40)$, and a point on the graph is $(60,0)$
Plug these values into the standard form equation to solve for a, then you can write the final equation.
$y-k=a(x-h)^{2}$
$0-40=a(60-0)^{2}$
$-40=a(60)^{2}$
$-40=3600 a$
$a=-\frac{1}{90}$
The equation is $y-40=-\frac{1}{90} x^{2}$

The height at $x=30$
gives the following for each model:

Ellipse: 34.64 m
Parabola: 30 m
The parabola comes closest to the actual height.

Written Response 2

Dartboard: The diameter of the dartboard is 50.3 cm , so the radius is 25.15 cm $x^{2}+y^{2}=(25.15)^{2}$
$x^{2}+y^{2}=632.52$
Backing: The diameter of the dartboard is 80.7 cm , so the radius is 40.35 cm
$x^{2}+y^{2}=(40.35)^{2}$
$x^{2}+y^{2}=1628.12$
Transformation: The small circle undergoes a horizontal stretch by a factor of $\frac{40.35}{25.15}=1.6$, and a vertical stretch by the same value.

Written Response 3

The vertex is located at (4, -2). These are the $h \& k$ values.

A point on the graph is located at $(0,0)$ This is a value you can use for $x \& y$.

Standard form for horizontal
parabolas $\rightarrow x-h=a(y-k)^{2}$
$0-4=a(0-(-2))^{2}$
$0-4=a(0+2)^{2}$
$-4=a(4)$
$a=-1$
The equation is : $x-4=-(y+2)^{2}$
Plug everything in and solve for a.

$$
\begin{aligned}
& \frac{x-\text { intercept: }}{} \\
& \text { Set } y=0, \text { then solve for } x . \\
& x-4=-(0+2)^{2} \\
& x-4=-4 \\
& x=0
\end{aligned}
$$

\boldsymbol{y}-intercepts:
Set $x=0$, then solve for y.
$0-4=-(y+2)^{2}$
$-4=-(y+2)^{2}$
$4=(y+2)^{2}$
$\sqrt{4}=\sqrt{(y+2)^{2}}$

First evaluate for +2
$+2=y+2$
$y=0$

Then evaluate for -2
$-2=y+2$
$y=-4$

The domain is $x \leq 4$
The range is $y \in R$

